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Abstract –The theory of calculus was extended to local fractional calculus involving fractional order. Local fractional
calculus (also called Fractal calculus) has played a significant part not only in mathematics but also in physics and
engineers. The main purpose of this paper is to further extend some mean value theorems in Fractal space, by Abel's lemma,
definition of Local fractional integrals and using some properties of Local fractional integral . In the paper, we present some
properties of Local fractional integral. By using it, we establish the generalized first mean value theorem and the
generalized second mean value theorem for Local fractional integrals in Fractal space.
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1. Introduction

local fractional calculus (also called Fractal
calculus) has played an important role not only in
mathematics but also in physics and engineers [1-15].
Local fractional integral of ( )f x [6-7,9] were written in
the form
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with 1j j jt t t   and 1 2max{ , , , , }jt t t t      ,

where for 1,2, , 1j N  ， 0t a and Nt b ,

1[ , ]j jt t  is a partition of the interval[ , ]a b . The purpose

of this paper is to establish the generalized Mean value
theorems for Local fractional integrals in fractal space.
We generalize the results of [1].

2. Preliminaries

Now we present some properties of Local fractional
integral, that will be used later in this paper.
Theorem 2. 1 [1]Every constant function ( )f x c is

integrable from a to b and
( ) ( )

( )
(1 )a b

c b a
I f x








 

.

Theorem 2.2 Every monotone function on [ , ]a b is
integrable.
Theorem 2.3 [1] Every continuous function on [ , ]a b is
integrable

Theorem 2.4 Let ( )f x be a bounded function that is
integrable on [ , ]a b . Then ( )f x is integrable on every
subinterval [ , ]c d of [ , ]a b .
Theorem 2.5. [1] Let ( )f x and ( )g x be integrable
functions on[ , ]a b and c . Then

(1) ( )cf x is integrable and
( ) ( )( ) ( )a b a bI cf x c I f x  ；
(2) ( ) ( )f x g x is integrable and

( ) ( ) ( )[ ( ) ( )] ( ) ( )a b a b a bI f x g x I f x I g x     .
Theorem 2.6 If ( )f x and ( )g x are integrable on
[ , ]a b , then so is their product ( ) ( )f x g x .
Theorem2.7[1] Let ( )f x be a function defined on
[ , ]a b and a c b  .If ( )f x is integrable from a to c
and from c to b , then ( )f x is integrable from a to b
and

( ) ( ) ( )( ) ( ) ( )a b a c c bI f x I f x I f x    .
Theorem 2.8 [1] If ( )f x and ( )g x are integrable on
[ , ]a b and ( ) ( )f x g x for all [ , ]x a b , then

( ) ( )( ) ( )a b a bI f x I g x  .
Theorem 2. 9 [1] If ( )f x is integrable on [ , ]a b , then so
is | ( ) |f x and

( ) ( )| ( ) | | ( ) |a b a bI f x I f x  .

3. Mean value theorems for Local fractional
integrals

Theorem 3.1 (First Mean Value Theorem). Let ( )f x and
( )g x be bounded and integrable

functions on [ , ]a b , and let ( )g x be nonnegative (or
nonpositive) on[ , ]a b . Let us set
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inf{ ( ) : [ , ]}m f x x a b  and
sup{ ( ) : [ , ]}M f x x a b  . Then there exists a point 

in ( , )a b such that
( ) ( )( ) ( ) ( ) ( )a b a bI f x g x f I g x  .

(3.1)
Proof. We have

( )m f x M  , for all [ , ]x a b .
(3.2)
Suppose ( ) 0g x  . Multiplying (3.2) by ( )g x we get

( ) ( ) ( ) ( )mg x f x g x Mg x  for all
[ , ]x a b

Besides, each of the functions ( )mg x , ( )Mg x , and
( ) ( )f x g x is integrable from a to b by Theorem 2.5

and Theorem 2.6. Therefore, we obtain from these
inequalities, by using Theorem 2.8,

( ) ( ) ( )( ) ( ) ( ) ( )a b a b a bm I g x I f x g x M I g x    .
(3.3)
If ( ) ( ) 0a bI g x  , it follows from (3.3) that

( ) ( ) ( ) 0a bI f x g x  , and therefore equality

(3.1) becomes obvious; if ( ) ( ) 0a bI g x  , then (3.3)
implies

( )

( )

( ) ( )
( )

a b

a b

I f x g x
m M

I g x



  .

there exists a point  in ( , )a b such that
( )m f M  ,

which yields the desired result (3.1).
In particular, when ( ) 1g x  , we get from Theorem

3.1 the following result
Corollary 3.1. Let ( )f x be an integrable function on
[ , ]a b and let m and M be the infimum and supremum,
respectively, of ( )f x on [ , ]a b . Then there exists a
point  in ( , )a b such that

( ) ( )
( ) ( )

(1 )a b

b a
I f x f


 





 

.

Remark:conditions of Corollary 3.1. is weaker than
those of Theorem 2.23 in [1].
In what follows we will make use of the following fact,
known as Abel's lemma.
Lemma 3.2. Let the numbers ip for 1 i n  satisfy the

inequalities 1 2 np p p   and the numbers

1

k

k i
i

S q


 for 1 k n  satisfy the inequalities

km S M  for all values of k , where iq , m , and M

are some numbers. Then 1 1
1

n

i i
i

mp p q Mp


  .

Theorem 3.3 (Second Mean Value Theorem I). Let
( )f x be a bounded function that is

integrable on [ , ]a b . Let further Fm and FM be the
infimum and supremum, respectively,

of the function
1

( ) ( )( )
(1 )

x

a
F x f t dt 



   on [ , ]a b .

Then:
(i) If a function ( )g x is nonincreasing with ( ) 0g x  on

[ , ]a b , then there is some point  in ( , )a b such that

( )F Fm f M  and
( ) ( ) ( ) ( ) ( )a bI f x g x g a F  . (3.4)

(ii) If ( )g x is any monotone function on [ , ]a b , then

there is some point  in ( , )a b such that

( )F Fm F M  and
( )

( )

( ) ( )

[ ( ) ( )] ( ) ( ) ( )
a b

a b

I f x g x

g a g b F g b I f x



  
.

(3.5)
Proof. To prove part (i) of the theorem, assume that

( )g x is nonincreasing and that
( ) 0g x  for all [ , ]x a b . Consider an arbitrary 0  .

Since ( )f x and ( ) ( )f x g x are integrable on [ , ]a b , we
can choose, by definition of Local fractional integrals, a
partition 0 1 1n na x x x x b     such that
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(3.7)
where im and iM are the infimum and supremum,

respectively, of ( )f x on 1[ , )i ix x . Since

1( ) 0ig x   , we get from 1( )im f x M  that
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(3.8)
holds. Next, by Corollary 3.1, there exist numbers i for

1 i n  such that 1( )i i im f M  
and
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Consider the numbers
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for 1 k n  . Obviously, F k Fm S M  , where Fm
and FM are the infimum and
supremum, respectively, of ( )F x on [ , ]a b . Put

1( )i ip g x  and 1( )
( )

(1 )
i i

i i

x x
q f








 

.

for 1 i n  . Since ( )g x is nonincreasing and
( ) 0g x  , we have

1 2 np p p   .

The numbers ip iS , and iq satisfy the conditions of
Lemma 3.2. Therefore
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On the other hand,
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From (3.8) and (3.10) we have, taking into account the
monotonicity of ( )g x and (3.6),

1 1 1
1

1 1
1

1
1

1
( )[ ( ) ( )]( )

(1 )

1
( ) ( )( )

(1 )

( )
( )( ) ( )

(1 )

n

i i i i i
i

n

i i i i i
i

n

i i i i
i

g x f x f x x

M m g x x x

g a
M m x x g a















  


 





 
 

  
 

   
 







.

From this and (3.7) it follows that
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Hence, using (3.9), we obtain
( ) ( )

1
( ) ( )( )
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Since 0  is arbitrary, we get
1

( ) ( ) ( )( )
(1 )

( )

b

F a

F

m g a f x g x dx
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 . (3.11)

If ( ) 0g a  , it follows from (3.11) that

( ) ( )( ) 0
b

a
f x g x dx   , and therefore equality (3.4)

becomes obvious; if ( ) 0g a  , then (3.11) implies
( ) ( ) ( )

( )
a b

F F

I f x g x
m M

g a



  .

there exists a point  in ( , )a b such that
( ) ( ) ( )

( )
( )

a b
F F

I f x g x
m F M

g a



   .

which yields the desired result (3.4).
Let now ( )g x be an arbitrary nonincreasing

function on [ , ]a b . Then the function
h defined by ( ) ( ) ( )h t g t g b  is nonincreasing and

( ) 0h t  on [ , ]a b . therefore,
applying formula (3.4) to the function ( )h t , we can write

( ) ( )[ ( ) ( )]
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[ ( ) ( )] ( )

a b
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I f x g x g b

f x g x g b dx
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which yields the formula (3.5) of part (ii) for
nonincreasing functions ( )g x . If ( )g x is

nondecreasing, then the function 1( ) ( )g x g x  is
nonincreasing, and applying the obtained
result to 1( )g x , we get the same result for nondecreasing
functions ( )g x as well. Thus, part
(ii) is proved for all monotone functions ( )g x .

The following theorem can be proved in a similar way as
Theorem 3.3.
Theorem 3.4 (Second Mean Value Theorem II). Let

( )f x be a bounded function that is integrable on [ , ]a b .

Let further m and M be the infimum and supremum,
respectively, of the function

1
( ) ( )( )

(1 )

b

x
x f t dt 


 

   on [ , ]a b . Then

(i) If a function ( )g x is nonincreasing with ( ) 0g x  on

[ , ]a b , then there is some point  in ( , )a b such that

( )m M    and
( ) ( ) ( ) ( ) ( )a bI f x g x g b   .

(ii) If ( )g x is any monotone function on [ , ]a b , then

there is some point  in ( , )a b such that

( )m M    and
( ) ( )( ) ( ) [ ( ) ( )] ( ) ( ) ( )a b a bI f x g x g b g a g a I f x     .
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